Electrical Neuromodulation and Renal Denervation for Heart Failure

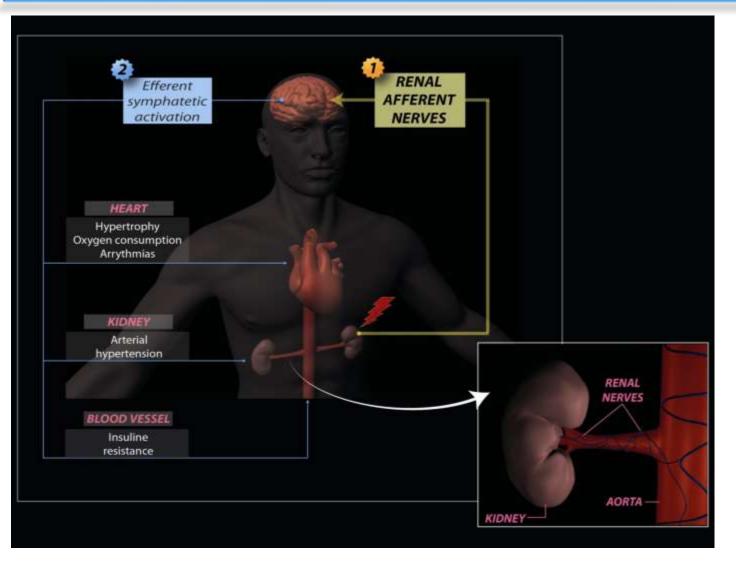
Wojtek Wojakowski, MD, PhD

Department of Cardiology and Structural Heart Diseases

Medical University of Silesia, Katowice, Poland

President Association for Cardiovascular Interventions

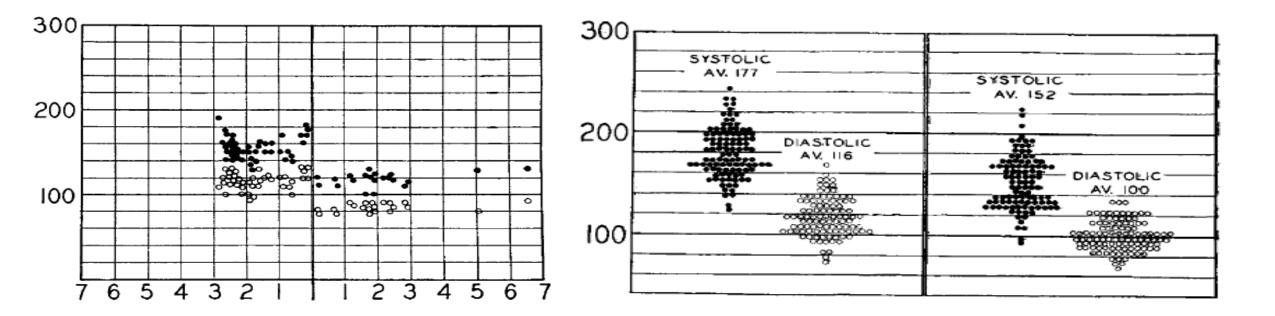
Polish Cardiac Society

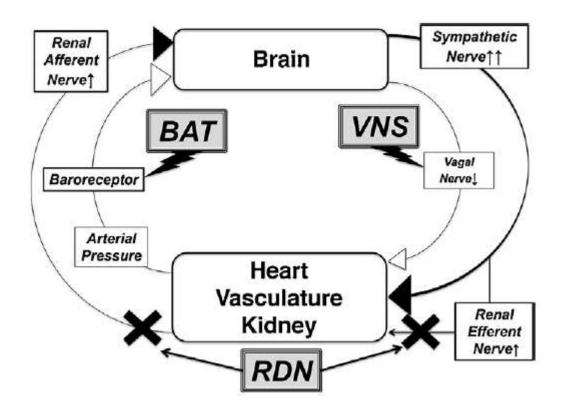

GÓRNOŚLĄSKIE CENTRUM MEDYCZNE SZPITAL W OCHOJCU

- Sympathetic activation is a significant predictor of a poor prognosis
 - heart failure
 - myocardial infarction
 - chronic kidney disease
- Increase in sympathetic activity proportional to the heart failure severity
- Sympathetic drive contributes to dyspnea, Na+ retention and resistance to loop diuretics
- Increased sympathetic activity is present in obstructive sleep apnea
- HF is associated with parasympathetic withdrawal and abnormal baroreflex activity

FUNDAMENTAL LINK BETWEEN AUTONOMIC NERVE SYSTEM AND HF OUTCOMES

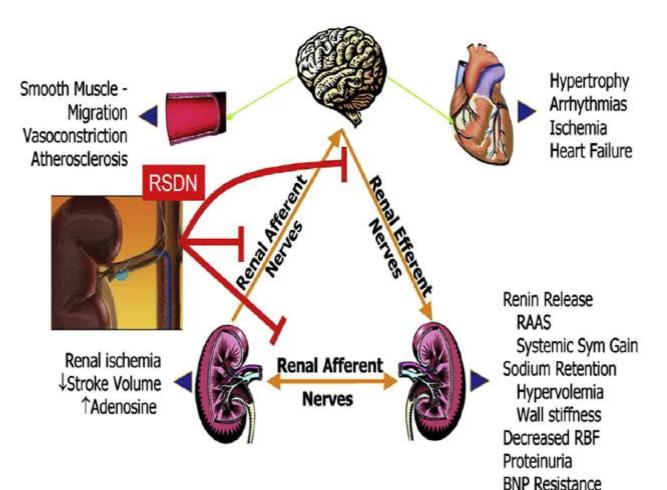
Neural modulation for AF and heart failure


 The autonomic nervous system plays a crucial role in the organ damage related to HF
 Decrease in cardiac output leads to activation of the RAAS and increase in sympathetic nerve activity


4. Device based modulation of the ANS might be

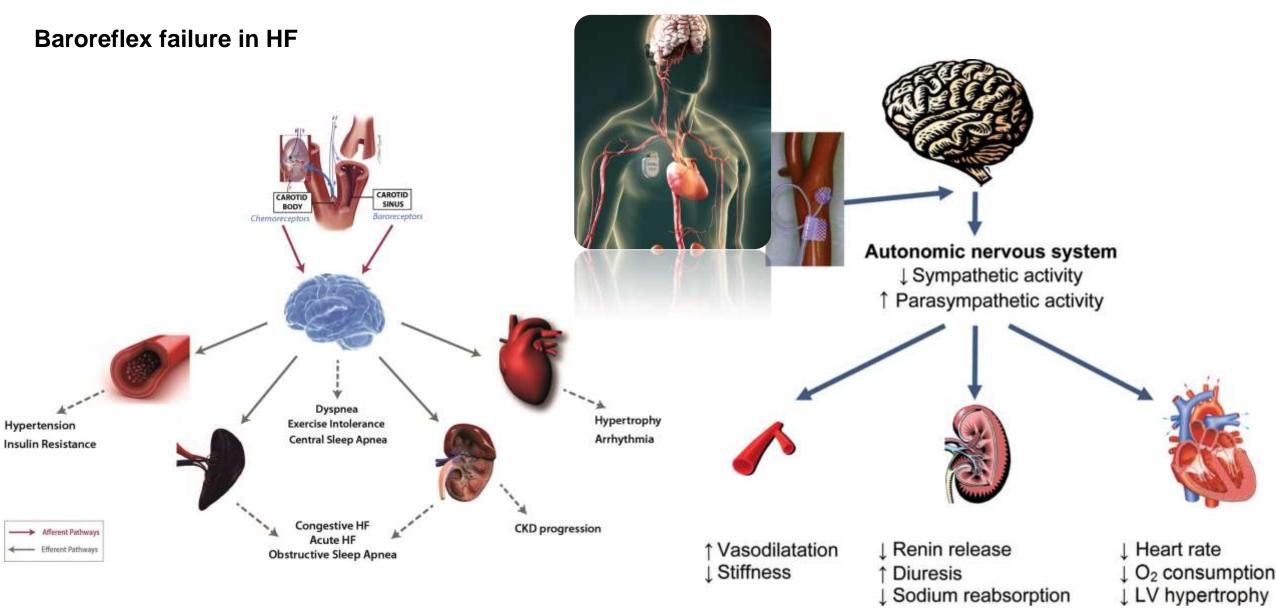
beneficial for HF and AF

EFFECT OF SYMPATHECTOMY ON BLOOD PRESSURE IN HYPERTENSION


A Review of Thirteen Years' Experience at the Massachusetts General Hospital

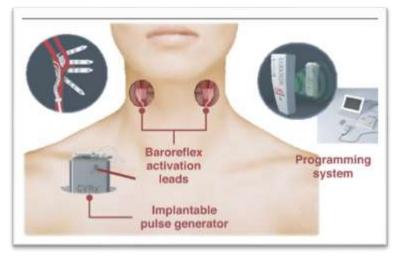
- 1. Renal denervation
- 2. Baroreflex activation therapy (BAT)
- 3. Spinal cord stimulation
- 4. Vagus nerve stimulation (VNS)
- 5. Carotid body modulation
- 5. Left cardiac sympathetic denervation

Renal denervation


PRECLINICAL:

- Rat MI model: better ventricular function, lower LVEDP, smaller LV end-diastolic and end-systolic dimensions and reduced sodium excretion
- Dog HF model: improvement in sodium excretion
- Rabbits with pacing-induced HF: normalization in the expression of angiotensin AT1 receptors.

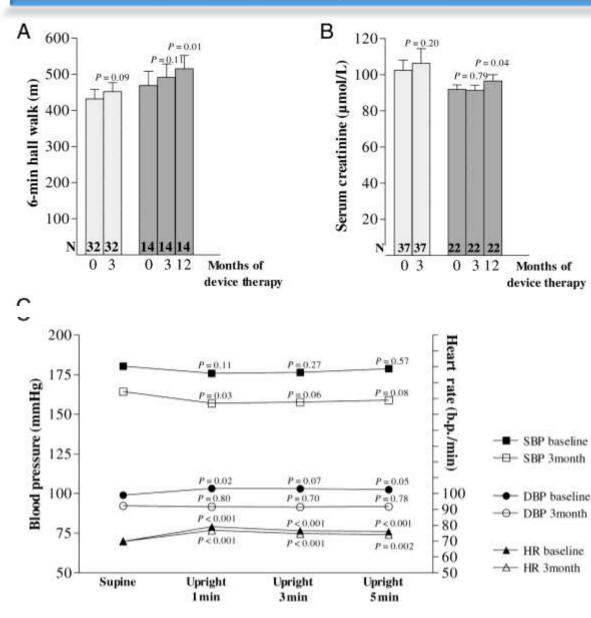
Trial	N	Criteria	Design	Endpoint [®]		
REACH-Pilot	7	Chronic HF NYHA III-IV	Single-arm, open label	Safety study		
SYMPLICITY-HF	40	 LVEF <40% NYHA II–III GFR 30–75 	Single-arm, open label	Safety study		
Renal Denervation in Patients With Chronic Heart Failure	100	 LVEF10%-40% NYHA II-III GFR >30 	Randomized, open label, parallel	Safety, number of complications		
DIASTOLE	60	 HF symptoms LVEF ≥50% Evidence of HFpEF HTN GFR >30 	Randomized, open label, parallel	Change in E/E'		
RDT-PEF	40	LVEF >40% NYHA II-III Evidence of HFpEF	Randomized, open label, parallel	Change in symptoms and echo findings		
RESPECT-HF	144	 LVEF ≥50% NYHA II-IV Evidence of HFpEF Episode of ADHF 	Randomized, open label, parallel	Change in LA volume index		


Renal denervation

Trial	NCT	Sponsor	n	Type of HF Population	Design of Study	Follow up (Months)	Main F <mark>indings – Efficacy</mark>	Main Findings - Safety	Current Status of Study
REACH - Pilot ⁶⁷	NCT01584700	Imperial College London	7	Chronic HF, NYHA III or IV, OMT	Open-label, non- randomized first-in- humans trial evaluation of the safety of bilateral renal denervation in patients with heart failure	6	Significant increase in 6- minute walk distance A self-reported improve- ment of symptoms	Non-significant trend to reduction in BP No statistically significant change in HR No deterioration of renal function	Completed
Olomouc I Pilot ⁶⁸	NCT01870310	University Hospital Olomouc	51	NYHA III, LVEF ≤ 35% on OMT			No significant BP decrease No change in renal function	On going	
RDT- PEF ⁷⁰	NCT01840059	Royal Brompton & Harefield NHS Foun- dation Trust	25	NYHA ≥II, HFpEF, OMT	Single-center, randomized, open- controlled study, RDN vs OMT = 2:1	12	No statistically significant difference in VO2, BNP, E/e', left atrial volume index or left ventricular mass index Comparable change in eGFR	Plain balloon an- gioplasty during the RDN procedure to treat renal artery wall edema in two patients	Early Ter- minated

Baroreflex activation therapy (BAT)

Electrical stimulation of baroreflex afferent nerves Rheos System; CVRx Inc.


First generation: Rheos System Second generation: neo[™] System L CVR в 250 s (6Hmm) 4BP 150 LLL hez/95 LLL hm 50 OFF ON OFF OFF ON ┉╈┿╅┯╧╧╧╧┲┯┯╞╋┯╤╢╦┅┲╧┲┲╧╴╏┲╌┲╡╞╞┝┝┼┼┶┥┥╕╶┫┨ 150 MSNA (%) MM MAN m 100 han a hand a shall have a shall have been and have been and have been and have been a shall be a sh mm 50 mannummunum 0 27 36 0 18 Time (mins)

Menne J et al. Nephrol. Dial. Transplant. 2013;28:288-295; Hypertension 2010;55:619-626.

PRECLINICAL

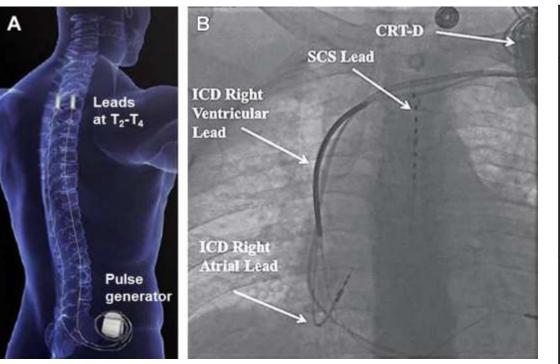
- Improved LVEF
- Reduced NE levels
- reduced LV filling pressure
- improved survival

Baroreflex activation therapy (BAT)

-	basenne and Change in Echocardiographic variables in Patient Conort	

Variable	Baseline $(n = 34)$	Δ 3 Months (n = 34)	Δ 12 Months (n = 21)
Cardiac structure			
LAD, mm	44.8 ± 1.3	$-1.2 \pm 0.5*$	-2.4 ± 0.8 †
LADI, mm/m ²	20.9 ± 0.5	-0.6 ± 0.2*	- 1.2 ± 0.3†
Septal wall thickness, mm	14 (13 to 16)	-1 (-2 to 0)‡	-1 (-2 to 0)‡
LV posterior wall thickness, mm	14 (13 to 15)	-1 (-1 to 0)‡	-1 (-2 to -1)‡
Relative wall thickness	0.56 ± 0.02	$-0.02 \pm 0.01*$	$-0.05 \pm 0.01 \ddagger$
LVOT diameter, mm	19.6 ± 0.3	+0.5 ± 0.2†	$+1.0 \pm 0.3$ †
LVEDD, mm	50.0 ± 0.9	-0.9 ± 0.5	$-1.6 \pm 0.5 \dagger$
LVESD, mm	31.0 ± 0.8	$-1.3 \pm 0.6*$	-2.4 ± 1.0*
LV mass, g	302.0 ± 15.7	-39.8 ± 6.5‡	-52.8 ± 9.3‡
LV mass index, g/m ²	138.9 ± 6.0	$-18.0 \pm 2.7 \ddagger$	-24.6 ± 3.9‡
Cardiac function			
LVEF, %	65 (62 to 68)	+1 (0 to +3)†	+2 (0 to +4)*
Stroke work	199.6 ± 8.8	-29.5 ± 8.8†	$-31.3 \pm 10.5 \dagger$
Mitral E-wave velocity, cm/s	0.78 ± 0.04	-0.01 ± 0.02	-0.06 ± 0.03
Mitral A-wave velocity, cm/s	0.84 ± 0.03	-0.03 ± 0.02	-0.11 ± 0.03†
Mitral E/A	$\textbf{1.02} \pm \textbf{0.10}$	-0.01 ± 0.05	$+0.07 \pm 0.09$
MWFS, %	13.9 ± 0.5	$+1.0 \pm 0.4$ †	$+1.7 \pm 0.6 \dagger$
SBP, mm Hg	179.6 ± 4.3	-23.6 ± 5.4‡	-25.7 ± 5.7‡
DBP, mm Hg	104.4 ± 3.0	-11.7 ± 3.4 †	-12.9 ± 4.3†
Pulse pressure, mm Hg	74.9 ± 2.7	- 11 .9 ± 3.1‡	-12.8 ± 2.9‡
Heart rate, beats/min	72.4 ± 1.8	$-4.5 \pm 1.5^{+}$	-2.7 ± 1.8
Rate pressure product, beats/min $ imes$ mm Hg	$13,267 \pm 565$	$-2,197 \pm 521 \ddagger$	$-1,994 \pm 606 \ddagger$

Menne J et al. Nephrol. Dial. Transplant. 2013;28:288-295; Hypertension 2010;55:619-626; Krum H et al. Eur Heart J 2011;32:537-544; J Am Coll Cardiol 2011;57:1787-1788.

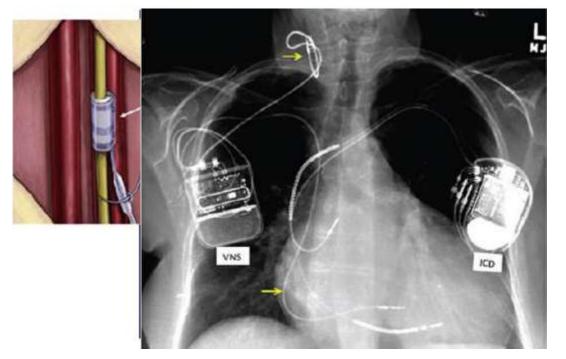

Table

Baroreflex activation therapy (BAT)

Trials	NCT	Sponsor	n	Type of HF Population	Design of Study	Follow up (Months)	Main Findings - Efficacy	Main Findings - Safety	Current Status of Study
Rheos DHF ⁷⁸	NCT00718939	CVRx, Inc.	6	NYHA III, LVEF ≥ 45%, elevated BNP or NT-Pro BNP	Prospective, randomized, double blind trial. RHEOS ON : device tum on for six months and remains on RHEOS OFF : device turned off for 6 months and then turned on	12	Significant reduction in NT- Pro BNP Significant increase in 6 minute walk test	Pending	Completed
HOPE4HF/ Barostim HF ⁷⁹	NCT01720160 NCT01471860	CVRx, Inc.	146	NYHA III, LVEF of 35%, OMT	Randomized, controlled trial. GDMT vs GDMT plus BAT (1:1)	6	Significant improvements in NYHA func- tional class, quality of life score, BNP and 6 minute walk distance	No difference in event free rate of all system and procedure- related major adverse neuro- logical and cardiovascular events	Completed
XR Barostim ⁸⁰	NCT01484288	CVRx, Inc.	12	NYHA class III, LVEF ≤40%, OMT	Open-label, single arm evaluation trial	6	Significant reduction in MSNA Improvements in baroreflex- sensitivity, LVEF, NYHA, quality of life	Hospitalization and emergency department visits for worsening HF were mark- edly reduced	Completed

Menne J et al. Nephrol. Dial. Transplant. 2013;28:288-295; Hypertension 2010;55:619-626; Krum H et al. Eur Heart J 2011;32:537-544; J Am Coll Cardiol 2011;57:1787-1788.

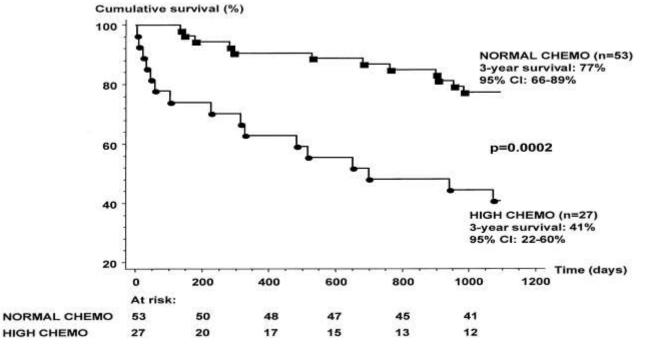
Spinal cord stimulation



PRECLINCAL

- increased the sinus cycle length and prolonged AV nodal conduction
- reduced the incidence of spontaneous VT/VF in ischemia model
- Increased vagal tone (reduction in SR, prolongation of PR interval, and lowering of BP)
- reduction in serum NE and BNP, reduction in VT/VF, improvement in LVEF and volumes in experimental MI

Trials	NCT	Sponsor	п	Type of HF Popu- lation	Design of Study	Follow up (Months)	Main Findings - Efficacy	Main Findings - Safety	Current Status of Study
Methodist SCS ⁹⁷	NCT01124136	The Meth- odist Hospi- tal System	9	Symptomatic HF despite OMT, NYHA III, LVEF ≤ 30%	Prospective, randomized, double-blind, crossover pilot study SCS ACTIVE VS SCS INAC- TIVE for 3 months, 1 wash- out month and crossover to SCS ACTIVE for 3 months	7	Improvement in qual- ity of life and NYHA in the majority of patients over the SCS- ACTIVE period No objective im- provements in LVEF and NT-pro BNP	Death (1) Hospitalizations for worsening HF (3)	Completed
SCS HEART ⁹⁸	NCT01362725	St. Jude Medical	22	NYHA class III or IV, LVEF 20% 35%, LVEDD 55- 80mm, implantable defibrillator, OMT	Prospective, multi-center, pilot trial 17 SCS device, 4 non-treated controls	6	Improvement in 4 of 6 efficacy parameters of the composite score Significant improve- ments in NYHA class, HF questionnaire, VO ₂ max, LVEF, and LVESV	Deaths (0) Hospitalization for worsening HF (2)	Completed
Defeat HF ⁹⁹	NCT01112579	Medtronic Cardiac Rhythm and Heart Failure	66	NYHA III, LVEF < 35%, LVEDD 55-80mm, OMT, QR S<120msec	Multicenter, Phase II, pro- spective, single- blind, random- ized study, (3:2) randomization SCS ON vs SCS OFF At 6 months, SCS OFF crossover to SCS ON	36	No significant differ- ences in LVESV, peak VO ₂ and NT-pro BNP between groups No differences in NYHA, HF question- naire, 6 min walk test	6 Deaths No differences in adverse events No difference in freedom from death or hospi- talization for HF at 6 months	Completed ⁹⁹


Vagus nerve stimulation

- Decreased vagal activity itself is associated with higher mortality among HF patients
- PRECLNICAL
- chronic VNS improved LV hemodynamics and survival in HF in animal models
- reduction in sympathetic activity
- Reduced inflammation
- Anti-arrythmogenic
- Protection agenist ischemia-reperfusion injury

Trials	NCT	Sponsor	n	Type of HF Population	Design of Study	Follow up (Months)	Main Findings - Efficacy	Main Findings - Safety	Current Status of Study
CF-MS- 01 ⁸⁸	NCT00461019	BioCon- trol Medi- cal	32	NYHA II-IV, LVEF < 35%	Multi-center, open- label phase II, two- staged study (8-patient feasibility phase plus 24-patient safety and tolerability phase)	6	Significant im- provements in NYHA, quality of life, 6 min walk test, LVEF, and left ventricular systolic volume	3 deaths 2 device-related adverse events	Completed
ANTHEM- HF ⁸⁹	NCT01823887	Cyberon- ics, Inc.	60	NYHA II-III, LVEF < 40%, OMT	Multi-center, open- label, sa fety, tolerabil- ity and efficacy ran- domized (1:1) Right- vs Left-side VNS study	6	Significant im- provement in LVEF, NYHA class, Significant im- provements in NYHA, HF ques- tionnaire scores, 6 min walk test	21 serious ad- verse events 1 death (related to the VNS system) 2 deaths (after 3 months, one sudden cardiac death, one HF medical non- compliance) Minor decrease in mean HR	Completed
NECTAR- HF ⁹⁰	NC T01385176	Boston Scientific Corpora- tion	96	NYHA II-III, LVEF <35%, LVEDD >55mm	Multi-center, double- blind, randomized, phase II trial (2:1) randomization VNS ON vs VNS OFF (control)	6	Not statistically significant im- provements in LV diameters, LV end- systolic volume, LVEF Statistically signifi- cant improvements in NYHA & HF questionnaire SF-36	3 deaths 7 infections associated to the device 19 hospitaliza- tions	Completed
INOVATE HF ^{#1}	NCT01303718	BioCon- trol Medi- cal	707	LVEF < 40%, NYHA III, OMT	Multi-center, open label, randomized, phase III trial, (3:2) randomization to VNS vs OMT	16	Not statistically significant im- provements in death from any cause or first event for worsening HF Improvement in NYHA, quality of life, 6 minute walk test	62 deaths (VNS arm) 28 deaths (control arm) Rate of freedom from procedure and system- related events was 90.6%	Early Termi- nated

Carotid Body Modulation

Median follow up 41 months

Independent of age, peak VO2, VE/VCO2 slope and LVEF

CB is adrenergic excitatory

- Increases central sympathetic outflow
- Inhibits parasympathetic outflow
- Increases organ specific adrenergic activity
 - Increases muscle and vascular sympathetic nerve activity
 - Renal sympathetic nerve activity
 - Cardiac sympathetic nerve activity

Selective Carotid Body Modulation can reduce the pathology associated with adrenergic hyperactivity and parasympathetic suppression

Ponikowski et al. Circulation 2001;104:544-549; J Physiol. 2012. 590:4269-4277.

- Interaction of baroreflex activation therapy and antihypertensive medications (eg RAAS inhibitors)
- sodium retention (diuretics required for a sustained hypotensive response to baroreflex activation therapy?)
- Combination with RDN
- Desensitization of baroreceptors or cardiovascular control centres in the brain.
- stimulation mode, eg. synchro with ECG or carotid pulse contour

- Fundamental link between sympathetic nerve system and HF outcomes Sympathetic activation is a significant predictor of a poor prognosis
- Targeting of sympathetic activity may address the unmet needs
- Current therapies in evaluation in modestly sized trials powered for surrogate outcomes
- Renal denervation
- Baroreflex activation therapy
- Spinal cord stimulation
- Vagus nerve stimulation
- Carotid body modulation
- Left cardiac sympathetic denervation